If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2+16z+8=0
a = 5; b = 16; c = +8;
Δ = b2-4ac
Δ = 162-4·5·8
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{6}}{2*5}=\frac{-16-4\sqrt{6}}{10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{6}}{2*5}=\frac{-16+4\sqrt{6}}{10} $
| 7x-35=4(x-8) | | (3x-18)°=(5x+14)° | | 6x+1/12=x6 | | -4+2=3x-4 | | -7(-7x)-10x=40 | | -4(2p-8)=8-12p | | 3x+6{4x-7}=93 | | -4(x-3)+1=-x+1 | | 6x+7=7(x+1)+6 | | 9x+23x-9=8(4x+9) | | 3(t–2)=6 | | -2(5x-1)=-8x-8 | | 4(2x-4)=4x+40 | | x–22=44 | | 6+8t=9t | | 3x^2-2x=86 | | 396(x)^28=872 | | 9x-21=6x-3 | | -4p(2p-8)=8-12p | | 18x=(-18) | | 3a=18a=12.a=6 | | 6(8+12p)=-4(-12-18p) | | 1.3x-5=8 | | 1b=7 | | -1-2s=-2-1 | | -4=5n=18+3n | | 2x-5=4(x+2)-2x | | -50x^2-390x-80=0 | | 5(x-2)+12=5x+2 | | −3.75+2(−4x+6.1)−=3.25x | | 180-2x-20=x | | 17=6+2+x |